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ABSTRACT

Research on improving the efficiency, cooling power, and cooling power density of
thermoacoustic refrigerators is described. A heuristic analysis of short
thermoacoustic heat exchangers in a high amplitude sound field is given. A heat
exchanger experiment, utilizing a very high amplitude thermoacoustic prime-mover,
shows some agreement with the heuristic analysis. This indicates that acoustic
losses in the heat exchanger can be drastically reduced in high amplitude engines,
while maintaining good thermal effectiveness. Other related, but more applied,
research is briefly discussed. This includes the design and construction of a
compact, portable, air-cooled, thermoacoustic refrigerator for the purpose of
producing frost at a lecture demonstration. This design has roughly the same
temperature span (400 C) as required by shipboard applications. Also, two new
electrodynamic acoustic drivers have been designed and one design has been
constructed. These designs offer high efficiency, good power density, and low cost
and are probably scalable up to significantly higher acoustic power levels. 0
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I Project Description

The goal of the proposed basic research is to consider and evaluate new

thermoacoustic cooler designs which will lead to substantial improvements in both

efficiency and cooling power density. The specific design aspects to be considered

are the acoustic resonator, the stack, and the internal heat exchangers. Substantial
improvements in both the efficiency and the cooling power density of thermoacoustic

refrigerators is necessary in order for the technology to be competitive with existing
vapor-compression systems.

1U Approaches Taken

Reasonably high cooling power densities can be obtained if high acoustic
amplitudes and high mean pressures can be used effectively. Acoustic amplitudes

having a peak dynamic pressure that is at least 10% of the mean pressure are

necessary (po/pm = 0.1) and a figure of 20% or higher is desirable. While the
acoustic loss for heat exchangers may be a modest fraction of the total, for low
amplitude engines, it is much larger for high amplitude engines. For some high

amplitude heat exchanger designs, the acoustic loss generated by both hot and cold

heat exchangers could be the dominant source of loss in the entire system, or at
least the largest single source of loss in the system. A simple, heuristic model

describing the thermal effectiveness of thermoacoustic heat exchangers is described
in section IV. These calculations indicated that very short heat exchangers having
low acoustic loss can still be thermally effective, if they have the proper plate or fin

separation.

Heat exchanger experiments have been conducted in order to test the heuristic
model. These are described in section V. Although the goal of the pioject is to
discover fundamental improvements in thermoacoustic refrigeration, the

experiments were conducted with a thermoacoustic prime mover. The reason for

this approach is that very large dynamic displacements of the working medium

(gas) are essential, and achieving such large displacements with an electro-

dynamically driven system is very difficult. The required electrodynamic drivers do

not exist, and developing them is a substantial engineering effort.

Another approach we are taking on the problem, is to study the efficiency of the

entire thermoacoustic resonator system including stack(s) and primary heat

exchangers, using numerical models. An optimization of the parameters should be

performed on a system wide basis, in order for the various compromises in
component design to combine to form a meaningful system optimum. We have not

made much progress on this as yet. It is our intent to build a smaller high-
efficiency/high-power refrigerator, once a good numerical design has been finalized.

S... .... Lia a m ] illl rle



While the proposed research is to be basic in nature, its goals do overlap, in part,

with our research on thermoacoustic cryocoolers. The cryocooler research is more

applied in nature, but it has forced us to engineer a high-efficiency/high-power

electrodynamic driver, in order to perform even the more basic aspects of our

cryocooler research. In addition to enabling basic research, we believe that this

driver design is an excellent one, in terms of low manufacturing cost and high

efficiency, and could be used for some refrigerators of the type being considered

here.

Finally, we have constructed a portable, air-cooled, low temperature span

thermoacoustic refrigerator. Its primary purpose is to produce frost at lecture

demonstrations. However, we may use it as a preliminary test bed for new

refrigerator concepts.

III Summary of Completed Work

A simple heuristic theory for efficient thermoacoustic heat exchangers has been

developed. This "short and narrow" heat exchanger model has been the subject of an

oral presentationI and will be included in a forthcoming publication on

understanding thermoacoustic heat transport in sub-boundary layer sized

geometries. A first draft containing most of the heat exchanger theory material is

given section V. While this theory is not precisely quantitative, it does provide

rough quantitative estimates for efficient heat exchanger geometries. A simplified

statement of the results is as follows.

Short finned heat exchangers with hxI/AXhx in the range of 3 to 8 can be

thermally effective as a source or sink of thermoacoustic heat transport if yo/Sr is in

the range of 0.75 to 0.5. The peak displacement amplitude of a gas parcel in the

heat exchanger is given by 4h., Axhx is the length of the heat exchanger, yo is the

half separation between adjacent fins or plates, and 8 is the thermal penetration

depth. Furthermore, the acoustic loss or dissipation of the heat exchanger, is

relatively less for yo/x = 0.5 than for smaller or larger separations. This particular

heat exchanger geometry should be very "efficient" in terms of having good thermal

coupling to the stack and low acoustic dissipation.

Heat exchanger experiments have been conducted in order to test the heuristic

model. Preliminary work on this experiment was presented at the Denver ASA

meeting2 and was completed as a master's thesis3 by Lt. Nelson Castro, USN, in

December 1993. In this experiment involving a room temperature to liquid nitrogen

temperature prime mover, three different heat exchanger lengths were tested while

holding all other experimental parameters constant. The results were evaluated

primarily in terms of the measured amplitude po/Pm, and in terms of Ihx/Axhx.

Briefly, the best values of po/Pm were about 27% for the longest exchangers where
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h./Axhx =- 2. Also, the best values of 4hx/Aixh were between 4 and 5 for the shortest

heat exchangers where po/pm ranged between 15% and 19%. This last result is
particularly significant since it shows that the heat exchanger length can be very
much shorter than a peak displacement amplitude of the gas, and still perform its
function effectively. Other key workers on this project were Prof. Anthony Atchley
and David Gardner.

Two new electrodynamic drivers of a slightly improved, Phase II, design have
recently been built. These drivers feature improved robustness; modularity for ease
of disassembly, inspection, and repair; and increase piston stroke. While the
"motor" of the Phase II driver is not particularly powerful or efficient, we have
measured electroacoustic efficiencies in excess of 45% and it should deliver acoustic
power levels up to 25 Watts. Also, it has low-mass piston assembly resulting in a
wide usable power bandwidth extending up to 700 Hz.

Also we have designed a more advanced, Phase III, high-efficiency electro-
dynamic driver and have tested some of the more critical components. The Phase
III design calls for acoustic output powers of at least 60 Watts and an electro-
acoustic conversion efficiency in the range of 80% to 90%. Custom magnets and
coils are currently being fabricated, but we do not expect to have complete units
finished for some time because this advanced driver project is not our highest
priority. We are currently working on a patent disclosure for these driver designs
and so the details will not be presented here at this time. Contributors to the driver
projects have been Jay Adeff, Lt. Kevin Mode, USN, and Lt. David Monahan, USN.

The compact demonstration refrigerator design was numerically optimized and
drafted and mostly fabricated by Lt. Brent Brooks, USN. The refrigerator was
assembled and run for the first time very recently. Although detailed
measurements have not been made as yet, the performance is roughly as
anticipated. It produces frost and the intended 400 C external uninsulated
temperature span. Master's student Lt. Todd Berhow, USN, is currently measuring
its performance, testing some minor modifications, and packaging it for easy
transport to lecture and demonstration sites.

IV Thermoacoustic Heat Exchanger Concepts and Theory

Swift4 argues that any gas parcel that spends a short amount of time adjacent to
the heat exchanger plate, relative to an acoustic period, does not make effective
thermal contact with the heat exchanger plate. This is because Swift assumes that
a thermal boundary layer of gas exists between the parcel and the plate, and that

this boundary layer represents too large of a thermal impedance for a significant
amount of heat to diffuse through the boundary layer in such a short time. One
heat exchanger design that results from these boundary layer considerations is a
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heat exchanger that has the usual plate or fin separation of several penetration
depths, and a length that is approximately equal to twice the peak displacement
amplitude 4, of a gas parcel. That is, AxM =- 22, where Asxi is the length of the
heat exchanger. This could be called the "maximum thermal effectiveness" design,
since any gas parcel that makes any thermal contact with the stack will always be
in thermal contact with the heat exchanger when it leaves the stack.

The problem with this design or geometry is that any engine incorporating a
small temperature span stack, and large acoustic amplitudes for high power
density, will have hot and cold heat exchangers whose total length is comparable to
the length of the stack. Since the acoustic dissipation of the heat exchanger is
significantly higher per unit length than it is for the stack, the total heat exchanger
dissipation will likely be the dominant source of inefficiency for the entire system.

However, we propose a simple heuristic model1 that suggests that a heat
exchanger can be both thermally effective and short in the longitudinal direction
Axhx << 24., if the plate separation, in the transverse direction, is comparable to a
thermal penetration depth 2yo = 8 . By drastically reducing the heat exchanger
length relative to the gas displacement amplitude, the surface area and acoustic
dissipation should also be reduced.

The model begins with a number of simplifying assumptions. Gas viscosity and
compressibility are ignored as are the details of the thermal contact between the
stack and the gas parcels. The latter issue is complicated by the fact that the stack
has a longitudinal temperature distribution T(x). The thickness of the plates are
assumed to be negligibly small. Referring to Fig. 1, we will also assume that there
is a discontinuity in the temperature T(x), between the end of the stack and the
beginning of the heat exchanger plates. Furthermore, we will focus our attention on
the second gas parcel from the top of Fig. 1, which is the parcel with the shortest
dwell time tD, in the heat exchanger. This is the shortest dwell time because the
parcel has its peak velocity at the center of its excursion. Approximately
tD vs Axb/koE.. This particular parcel is important because it has the poorest
thermal contact with the heat exchanger. Finally, we assume that the heat
exchanger length, in the x direction, is much greater than the fin separation. That

is, AXhx >> 2y.. This assures that the standard heat conduction solution for an
infinite "slab" of material (see Fig. 3) is a reasonable solution for the gas in the
exchanger.
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Figure I - Gas parcel movement and temperature distribution
for short and narrow heat exchangers.
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The question of thermal effectiveness can be stated thus: How long does the
parcel have to remain in the heat exchanger to thermally equilibrate with the
exchanger plates? It is important to note that perfect thermal equilibration is
probably not a sensible goal, because this will require long heat exchangers, such as
those in Swift's analysis. Long heat exchangers are undesirable because of the high
acoustic dissipation incurred. A more sensible goal might be 90% thermal
equilibration. That is, the final temperature of the gas parcel after passing through
the exchanger is different from that of the exchanger by an amount that is only 10%
of the temperature discontinuity in T(x).

We can recast the problem from one of a static temperature distribution in the
plates and moving gas parcels, to one of a stationary slab of gas having a time
dependent temperature at its boundaries. In Fig. 2, we assume that the
temperature of the slab boundaries has a step discontinuity in temperature at time
t=O and we let the gas thermally equilibrate for a time equal to the dwell time tD.

Figure 2 - Stationary thermal diffusion problem with a
step function in the temperature at the boundaries.

Inside the HX T

~VT,

TB ,I
t=0 tD

The solution for the ratio of the gas temperature to the boundary temperature,
averaged over the slab, can be found in a standard text 5. This solution is indicated
by the solid curve in Fig. 3, where a y-axis value of 1.0 represents perfect
equilibration, and the x-axis values are normalized time r = XtD/y0

2, where X is the
thermal diffusivity. If we substitute our approximate value for the dwell time into

• --- i~ai Imm m ll ililmi5



the expression for t, and we use the definition for the thermal penetration depth
8- 42./o), we obtain

Figure 3 -Average thermal equilibration of medium
as a function of normalized time.
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The solid curve represents the amount of equilibration after one pass through the
exchanger and the long dash curve represents the amount of equilibration after two
passes (one outgoing and one incoming), in one acoustic cycle. This assumes that
the temperature of a gas parcel is static when it is not in contact with either the
stack or the heat exchanger. In fact, the temperature distribution of the gas parcels
may be stratified in the transverse direction after one pass through the exchanger
and they will be thermally equilibrating with their nearby neighbors. The short
dash curve of Fig. 3 assumes perfect equilibration of the gas with itself, in between
the first and second passes. The true solution will lie somewhere between the two
dashed curves.

Note some values of equilibration versus t. For r = 0.25, the equilibration is
about 77%; for r = 0.5, the equilibration is about 93%; and for t = 0.75, the
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equilibration is about 98%. The curves shown in Fig. 3 represent the worst case gas
parcels with respect to thermal equilibration and we may expect that the difference
from perfect equilibration is as much as a factor of two better when averaged over
all possible gas parcels. Thus values of r between 0.25 and 0.5 may be a good choice
for a heat exchanger, since this should guarantee a thermal equilibration in excess
of 85%.

In Fig. 4, a range of parameters for y./8. and ,/Axh is bcinded by the area
between the - = 0.25 and r = 0.5 curves, for which the worst case thermal
effectiveness is between 77% and 93%. Heat exchangers with i/Ax x t"he rLahger
4 to 8 can be thermally effective if vJ8 is in the range of 0.75 to 0.5.

Figure 4 - Short heat exchanger parameter ranges for
three different levels of thermal effectiveness.
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We have not yet given any consideration to the actual acoustic dissipation of the
heat exchanger. While the above model for thermal effectiveness is a large or finite
amplitude model, we will only look at the usual infinitesimal amplitude theory for
"thermo-viscous" losses. It must be noted that the physics of finite amplitude
viscous dissipation in these heat exchangers is quite complex and these details are
simply ignored here.

In Fig. 5, we calculate the normalized "thermo-viscous" losses for a specific hot

heat exchanger in the "demonstration" refrigerator as a function of y./8, . This
particular refrigerator design is optimized for small temperature spans and this heat
exchanger might be roughly representative of any small temperature span
thermoacoustic refrigerator. The distance of the exchanger from the pressure
antinode is kx = 0.11 radians, and the Prandtl number is 0.667. Also note that
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these losses should scale in direct proportion to the length of the exchanger as long
as the acoustic pressure or velocity does not vary appreciably over its length.

Figure 5 -Acoustic dissipation in heat exchanger at
kx 0.11 radians, and Prandtl = 0.667.
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Note the general hyperbolic trend of low loss at large values of y018, and high loss
at small values of yo18, , in Fig. 5. This is because the perimeter, or surface area per
unit length, of the exchanger is inversely proportional to the plate separation. The
features that are really interesting though, are the local maximum in exchanger
losses at yo/ 8K = 1.1 and the local minimum at yo/8, = 0.5. The reason for the

minimum at yo/ 8 . = 0.5 is because gas compressions are largely isothermal at this
separation value, but peak velocities and viscous losses increase dramatically for

even smaller separation values. If this dissipation result is combined with the
above thermal effectiveness results, then it is apparent that some appronriate
"filure of merit" function used in optimizing heat exchanger geometries would Reak
stron&1v at a value of about vJyO = 0.5.

While we do not expect these acoustic dissipation results to accurately represent

the e"tual finite amplitude problem, we expect that the qualitative character is
similar. Also, other positions of the exchanger (in the x direction) and other values
of Prandtl number will change the character of Fig. 5 somewhat.

V Heat Exchanger Experiments

The objective for the heat exchanger experiment was to test and evaluate
different thermoacoustic heat exchanger geometries in an acoustic environment
having very large displacement amplitudes. A room temperature to liquid nitrogen
temperature prime mover system was choser instead of an electrically driven
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refrigerator because very large displacement amplitudes are difficult to achieve

with electrodynamic drivers. High temperature heaters were avoided so that soft

solders and plastics could be used in the construction; hence liquid nitrogen

temperatures were used at the cold end.

An important requirement for the experiment was to suppress the heat flow

density in the stack and heat exchangers so that uniform and constant

temperatures in the heat exchangers could be maintained. Otherwise, the simple

copper fin exchangers we used would not carry enough heat. A gas with a low
sound speed and low mean pressure was used to reduce the heat flow at a given

relative acoustic amplitude (eg. po/Pm). Unfortunately, at liquid nitrogen

temperatures, neon is the heaviest monatomic gas that does not liquefy.

The method used in the experiment was fairly straightforward. We attempted to

keep all aspects of the experiment constant except for three different heat

exchanger pairs that were swapped in and out of the apparatus. Performance was

evaluated primarily in terms of measured amplitudes, po/pm. Given a fixed

resonator geometry and temperature spans, heat exchangers that are thermally

more effective will generate higher amplitudes. Similarly, everything else being

equal, heat exchangers with lower acoustic losses will also generate higher

amplitudes. An electric heater with a temperature controller was used to keep the

hot heat exchanger near room temperature. While measurements of the heater

power would have been interesting, we did not obtain reliable heater power

measurements until near the end of this sequence of measurements. This data will

not be presented here. Also, the stack and exchangers were extensively

instrumented with thermocouples.

The apparatus is shown in Fig. 6, not to scale. The bottom portion of the

resonator vessel is considerably longer than shown. The upper portion of the tube
(3.77 cm inner diameter) features a sliding plunger with 0-ring, so that the position

of the stack in the standing wave can be adjusted. A single absolute pressure

transducer is installed in the plunger which measures both the dynamic pressure

via the AC component of the signal, and the mean pressure via the DC component of

the signal. A heater collar is coupled to the hot heat exchanger flange. The stack is

housed in a thin wall stainless steel tube. The cold heat exchanger flange is coupled

to both the resonator tube and a large copper skirt with copper fingers, all of which

are immersed in liquid nitrogen. The tube bore reduces to an inner diameter of

3.18 cm just below the cold exchanger and increases to an inner diameter of 5 cm

closer to the bottom end of the tube. These diameter changes were required to

obtain a relatively distortion free waveform. The total internal length of the gas

column was approximately 65 cm.

9



Figure 6 - Section of the resonator.
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The experiment was run with three different pairs of copper fin heat exchangers

with three different lengths in the x or wave propagation direction. Exchangers in a

pair were identical. All exchangers had a plate thickness of 0.254 mm and a plate

separation of 0.508 mm. The three pairs had lengths of 0.257 cm, 0.569 cm, and

0.82 cm. The stack was a spiral roll of plastic film having layer separations of

0.85 mm. Two plunger positions of 8.13 cm and 10.7 cm relative to the hot heat

exchanger were used, and mean neon pressures of approximately 8.7, 10.8, 27.5, 50

kPa were used.

The measured results are shown in Fig. 7 and Fig. 8, and some reduced results

are shown in Fig. 9 and Fig. 10. Figure 7 shows the relative pressure amplitudes

po/pm , obtained as a function of mean pressure. Note that the longest exchangers

produce the best amplitudes at the higher pressures, but that the shortest

exchangers perform about as well as the longest at the lower 10.8 kPa pressure.

Curiously, the medium length exchangers generally perform the poorest. Relative

Dressure amtlitudes as high as R/IDm = 29% (not shown on the Diot) were measured.

Figure 8 shows hot to cold temperature ratios measured at the center of the hot

and cold heat exchangers where the temperature defect along the copper fins should

be the largest. The ratios are plotted as a function of mean pressure where the

prime mover is below onset at the lowest pressure, and above onset for pressures of

8.7 kPa and above. Note that our initial hope of constant and uniform temperatures

is only roughly valid at the lower mean pressures and badly violated at the higher

pressures. In spite of the low pressure neon, heater powers in the range of 100 to

200 Watts were measured at the higher mean pressures because of the extremely

large amplitudes.

Two other features are worth noting in Fig. 8. The anomalously low relative

amplitudes shown in Fig. 7 for the medium length exchanger (0.57 cm long) are

explained in Fig. 8 where the temperature ratio is shown to be the lowest for this

particular exchanger. In other words, the thermoacoustic "drive" was reduced. The

reason for the low temperature ratio is hard to explain. Our best guess is that there
were "cold" or imperfect soft solder joints coupling the finned exchanger elements to

the flange(s) of the apparatus. While the solder joints appeared to be fine visually,

something obviously added to the thermal impedance of the connections. The

temperature ratio of the shortest exchanger was somewhat reduced compared to the

longest exchanger, as is to be expected, since it simply has less copper in it. Note

that the shortest exchangers are at a "unfair disadvantage" compared to the longest

exchangers because of this reduced temperature ratio.

Figure 9 shows calculations of yd/,, for gas in the hot and cold exchangers as a

function of mean pressure. The calculation included not only the mean pressure

dependence of the thermal penetration depth, but also the unintended temperature

variation at the higher pressures. Comparison of these values with the conclusion
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of the theory in section IV, would indicate that the relative plate separation values

YA/8 ,, for the hot exchanger were good at the higher mean pressures, but too small
at the lower mean pressures. The relative plate separation values for the cold
exchanger were slightly too large at the lower mean pressures and very much too
large at the higher pressures. In hind site, the cold exchangers should have had
plate separations (in absolute units) that were a factor of 2 less than the hot
exchangers. This would have placed the relative separations of both exchangers
the "golden" range of about yo/,8 = 0.5 for mean pressures around 30 kPa. Also,
relative layer separations in the stack at the midpoint (half way between
exchangers) ranged between y0/S, = 0.55 at Pm = 8.7 kPa, to yo/S, = 1.25 for
Pm = 50 kPa.

Finally, Fig. 10 shows the measured amplitudes expressed in terms of calculated
values of local peak displacement amplitude 40(x), relative to the heat exchanger

and stack lengths, 4oAx. While the shortest heat exchangers did not produce the
largest values of po/Pm , we can see that the shortest exchangers did produce peak
displacement amplitudes that aire locally as much as 5 times as large as the length
of the cold heat exchanger. Another interesting feature of this plot are the values
for the stack which in some cases exceeded tL/Ax = 0.5. This indicates that the
oeak-to-Reak disnlacement amplitude was greater than the length of the stack!

The extent to which these results clarify the problem of heat exchanger geometry
is limited by a number of experimental problems which could be minimized or
eliminated in the future. The largest problem is that a given pair of exchangers did
not have approximately equal values of y./18, which could be fixed by fabricating
more exchangers with different plate separations. Also, the variations in hot to cold
temperature ratios should be minimized. But I think these measurements are good
enough to show that heat exchanger lengths can be considerably shorter than a local
peak displacement amplitude, and still function effectively. We hope to publish the
heat exchanger theory and experiment material soon.

12
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Figure 7 - Measurements of relative peak pressure amplitude
vs. mean pressure.
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Figure 8 - Temperature ratio from hot exchanger to
cold exchanger vs. mean pressure.
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Figure 9 - Ratio of exchanger plate separation to
local thermal penetration depth vs. mean pressure.
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Figure 10 - Ratio of local peak displacement amplitude to
stack or exchanger length vs. mean pressure.
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VI Demonstration Refrigerator

A little over a year ago we decided to construct a thermoacoustic refrigerator for

demonstration purposes that was more advanced than previous demonstration

hardware. The reasons were threefold: to have a more impressive refrigerator

demonstration, to have a project that students could work on in the time frame of a

Master's thesis, and to gain some experience with small temperature span

refrigerators.

The basic design criteria were as follows. The refrigerator should be able to

produce frost in an uninsulated configuration, and should be able to run for an

indefinite period of time. Also, all of the equipment required to run the refrigerator
should fit in a medium sized carrying case with a moderate weight. The specific

constraints chosen from these general criteria were these: The hot end of the

refrigerator and driver would be cooled with an integral fan. The internal (stack)

temperature span would be 400 C, so that freezing temperatures could be obtained
in spite of temperature drops at the hot and cold internal heat exchangers as well as

for the final heat exchange to ambient air. The refrigerator would use our compact

Phase II electrodynamic driver, which was the only choice readily available to us for
a pressurized helium system. A mean helium pressure of 6.2 bar was chosen as

offering good cooling power density and low strength requirements which allowed
soft solder joints on the small diameter tube. A peak dynamic pressure of 5% of

mean was chosen based on driver and overall power level considerations.

The entire system is modular, so that even the resonator and driver components

can be broken down into sub components and reassembled rather quickly. Modified

sub components could then be easily tested. Of course, certain modifications of a

sub component might require the modification of other sub components.

A numerical model for the refrigerator was used to optimize several system

parameters together with the above constraints. The resulting refrigerator is

shown in Fig. 11. It is approximately the same overall design as the one in the

Hofler patent6 and the one used in the Space ThermoAcoustic Refrigerator, STAR 7.

Some details of the driver have been omitted from the figure.
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Figure 11 - Section of a thermoacoustic demonstration refrigerator.

FAN

In order to shrink the size of the resonator we decided to run the helium filled
system at 650 Hz, which is the highest operating frequency for the driver that gives
reasonable driver efficiency. We also decided to use a smaller elongated float
volume (shown at the top of Fig. 11), with a penetrating small diameter tube, for

compactness. With the optimum resonator shape, the resonator was rather long.
By reducing the diameter of the small diameter tube below the optimum, the
resonator length was reduced by more than 2 inches, at a very small cost in
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efficiency. The length from driver to resonator float is about 14" and the overall
length including fan is about 17."

The heat exchanger design is not quite as efficient as the one discussed in section
IV because the fin separation is about a factor of two too large with a value of
y 0/8 a 1.0. The reason for this is that these finned exchanger are very difficult and
time consuming to fabricate and we have not attempted extremely small spacings
yet. Secondly, the exchangers that we used are already reasonably short and
efficient because the acoustic amplitude is still rather low. The short exchangers
each utilize three thick copper "cross-bars" or "thermal buss-bars" that are soldered
to the fins at a 900 angle to the fins. The fins have most of the surface area and the
cross-bars have most of the copper mass. The calculated temperature defect in the
fins is about 0.50 C, which would have been about 100 C without the cross-bars. The
cross-bars themselves have a temperature defect of about 2* C. The sum of all four
temperature defects in the hot and cold exchangers is about 50 C. This does not
include any defects between stack and exchanger or to ambient air temperature for

the air cooling.

Although the refrigerator has recently been run and has produced frost and a

measured external temperature span of about 400 C, no detailed measurements
have been taken yet. However, the numerical model predicts a COP of about 1.2
which is about 20% of Carnot at a 400 C span. For a drive level of po/Pm = 5%, the
cooling power is about 12 Watts and the acoustic drive power is about 10 Watts.
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